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An attempt is made to investigate the number of possible sta-
tionary combustion modes in a continuous-flow semi-infinite pipe
with allowance for heat losses through the walls, Cases of a zero-
order reaction in the reaction mixture or similarity of the concentra-
tion and temperature fields are considered, The equations are averaged
with respect to the transverse coordinate 7, Within the framework of
these approximations it is found that the number of stationary com-
bustion modes is determined by the roots 6, of some function, The
1oots Oy, correspond only to trivial unstable solutions, The roots €.,
correspond to modes possible within broad regions of variation of the
parametess characterizing the temperature of the mixture, the mix-
ture feed rate, and the rate of heat removal, These regions intersect,
forming zones where several stationary modes coexist, In these zones,
apart from monotonic solutions there may also be solutions that ini-
tially make several oscillations, It is shown that the latter are obvious-
ly unstable and, in the last analysis, lead to one of the monotonic
modes. The common case of not more than three roots is examined in
detail,

If the heat release function can change sign, then a similar pic-

ture Is also observed in the absence of heat losses through the walls
(the roots 6,i-; and 6,4 may change roles). In this case it is no longer
necessary to average the equations with respect to 1, since there will
not be any corresponding derivatives,

We will consider a semi-infinite cylindrical pipe of
radius r; into which a reaction mixture at temperature
T.. is fed from the end at constant velocity w. The
equations of stationary combustion in the pipe are
taken in the form:
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Here, T is temperature, T; is the temperature at
the walls, E is the activation energy, R is the univer-
sal constant, x, r are the longitudinal and radial co-
ordinates, %, %y = const are the effective thermal
diffusivities in these directions, and F(T)pc = 0 is the
heat release function {(pc = const is the volume spe-
cific heat of the mixture).

Fig. 1

Problem (1) corresponds to the case of similarity of the concentra-

tion G and temperature T fields, which is realized for 27Dy, (D s
¥

the diffusion coefficient) and similarity of the boundary conditions for

C and T, which presupposes a continuous supply of active medium and
the partial removal of combustion products through the walls, The
case of a zero-order reaction also leads to problem (1), This can be
used, for example, in connection with a small decrease in active
medium in a sufficiently long pipe, a situation frequently encoun-
tered in chemical engineering. Neglecting the decrease in active
medium majorizes the heat release function, which helps in esti~
mating the region of conditions under which ignition, in this case
undesirable, will not occur,

In [1-4] the stationary combustion modes investigated in flat,
cylindrical, and spherical vessels without through- flow are described in
the cylindrical case by Eq. (1) without the first and third terms, and
in the plane case by anequation of type (2) without the second and last
terms. Stationary combustion in continuous~flow chambers has been
mainly investigated, for example, in [§-7], without consideration of
the heat loss through the walls, although the latter may sometimes
play an important part, An attempt to study this effect was made in
[81. Equation (1) was investigated with the first term discarded (which
is valid at small @) and the function j(u) linearized, These simplifi-
cations heavily distort the qualitative picture; in particular, they do
not allow consideration of the possibility of nonuniqueness of the solution.

We will investigate Eq. (1) by an integral method
(averaging the equation with respect to n). Inthis case
we represent u(£,n), for example, in the form of a
sum of powers of i not higher than the second with
coefficients depending on &, i.e., with account for the
boundary conditions u{£,n) = 6(¢)(1 - n%. Substituting
an expression of this type into Eq. (1) and integrating
the latter over the cross section of the pipe, we obtain
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The general form of Eq. (2) and all the subsequent analysis remain
unchanged if we approximate u(§, ) with respect 10 1 by means of
some other functions or, in general, make it independent of 7 {the
heat transfer coefficient plays the part of 1/8). The plane case also
leads to Eq. (2).

We will find bounded solutions of Eq. (2). This ex~
cludes the indeterminacy congisting in the possibility
of the presence of heat sources at infinity. For solu-
tions taking the value . at infinity the boundary con-
ditions can be taken in the form:

£E=0,0=0_ E=o0, 0=29,. (3)

+

Hence it follows that do/d¢ = 0, d%/d% =0 at £ =
= < and, consequently, in accordance with (2), the
values 64 must be roots of the function

Y0 = (®) —08/8. (4)
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If #(0) does not have roots, then there are no sta-
tionary combustion modes taking a definite value at
infinity.

Fig, 3

Let (6) have N roots 0 = 0y = 0, = ... = 6 (the
roots are nonnegative since $(6) > 0 and 6 < 0), Then
problem (2), (3) can be reduced to the following N

problems (n=1,2,...,N):
dP_l $(9) de
df 2 Tap E—f_p'
E=o00, 8=60, p=0 E=0, 0=0_. (5)

On the 6p-plane the points (6, 0) are singular
points and, since there are no other singularities,
they will be denoted by 6,. In order to determine the
form of 6 we construct the characteristic equation
with roots

M2 = 1/2 ('1 + V1 ’_Gn)v Op = 4“"1’, (en) (6)

We begin by assuming that §(6) is continuous up to
the first nonzero derivative and |$'(9)] < «, The func-
tion ¥(9) > 0 at 0 < 0. Therefore y{6) > 0 at 6 <6, and,
consequently, in the case of simple roots $'(9y) < 0,
(0 > 0,..., ' (05k—1) <0, ¥'(8y) >0, and so on,
Hence, in accordance with (6), the point Oy _; (k=
=1,2,...) will be a saddle point, and 9,k a node at
ok = 1 and a focus at gk > 1 (Figs. 1-3).

This sequence is also retained in the case of a
multiple root 6y, j (0 = Op4y = ... =0j. In accordance
with the analytic criteria given in [9], taking into ac~
count the sign of ¥(6) at n = 2k, the left half 6, of the
point 0y i will be a node (the form of the curves near
it is shown in Fig. 4), and at n = 2k — 1 a saddle point
(Fig. 5), Similarly, the right halves #; of the points
fn,i in Figs. 4, 5 correspond to the cases i =2j —1
(saddle point) and i = 2j (node). If the forms of both
halves of the point 911 j are the same (root of odd
multiplicity), then it can be denoted by 8,,. The incli-
nations A;, Ay of curves passing through a saddle
point and a node and the form of the curves near a
focus in polar coordinates (B is an arbitrary constant)
will be

x1,2 (en) =WP1,2 (en) a’l,
p=DBexp[—(6,— 1) "0]. (7

If we assume that motion along the curves in the
fp-plane proceeds in the direction of an increase in
£(de/p = d¢ > 0), then any curve traveling from the
straight line 6 = 0_ and arriving at the point 6, will
ensure the solution of problem (5), and conversely.
In fact, if we take the curvilinear integral

2=t
(0=, 8

along such a curve, then £(6.) = 0, £(0y) = = (at the
point 6, the integral converges), and £(f), increasing
monotonically along the indicated curve, uniquely
defines the unknown function 6(£). The converse is
obvious.

In the upper half-plane, where p > 0, motion along
the curves takes place from left to right, and in the
lower half-plane from right to left. Therefore at
points 8y (Figs. 1-3) the curves converge, and there
are no solutions with 6+ = 65k (except for the trivial
solution ¢ = Oy at 0_ =0y, which may be assumed
unstable).

The curve lgk.y with inclination Ay(05k_¢) = 0 ar-
rives at point 65k—y,5j (Fig. 5) from the left, at point
025, 2k~1 (Fig. 4) from the right, and at point 69 _;
(Figs. 1-5) from both sides. It remains to establish
the values of 4_ for which these curves give a solution,

Let $(9) have the roots 85 < 8, < 3. From (5),
taking into account the sign of ¥(0), there follows

[ e <
(gg)pr_f:ﬂ - { i :

If we proceed from point 6, along the curve 1 against the motion,
then in accordance with (8), its left branch cannot turn back, inter-
sect the 0-axis or have a vertical asymptote, but proceeds always to
the left (Figs. 1-3), ensuring a solution with 6, = 0y (first mode, for
all 8. = 6, (only 6. > —E/RT, has physical significance), However,
its right branch, proceeding to the right, either intersects the 6-axis
at the point 8 ;* € [0,, 85] (Figs. 1,2) or proceeds further (Fig. 3)
to infinity (6,F = ), If6,* = 8, or 6,* = 63, then it is possible to pro-
ceed only to the point 6;*, since reaching (leaving) 6y corresponds to
infinite changes in .

If 6, < 0 < 6,, then from 6;* curve 1;, in accordance with (8),
proceeds to the left into the upper half-plane, approaches the straight
line @ = 8, and intersects the O-axis at the point 05 < 6,' = 0y, since,
in accordance with (5)-(7),

(dp /| dB)psg = — (dp / dB)py + 2/ a. (9)

(0 <8y, 6,<T8<T8y)

(B <8<8,, >0y " ®

At 6," curve 1, again turns and proceeds to the right in the lower
half-plane, intersecting the 6-axisat 8, = 6 < 6;%, and so on, Asa
result, it arrives at the point ©,, making an infinite number of loops
at 0y > 1 (Fig, 2) and a finite number at 0, = 1 (Fig, 1). Thus, the
right branch of curve 1, gives a solution with €, = 6, for 6, = 6_ =68
(at 6 =0, 0r 6" = 0, for 6; = 6, < 6{"), while at 6,1 = 6_ = 6.%,

6, < 61" < 6, to the monotonic solution there must be added solutions
(at 6, = 6,, 0, > 1 there are infinitely many) which first make a finite
number of oscillations about 6,

Fig. 4

Slmllaﬂy, curve 13 glves a solution w1th 0, =96, (th1rd mode) for
6. = 6, (at 6, =00t 8, = 6, for 6. >e3), where 8, = ey, 651
(Figs. 1,3) or93 = —o (Fig, 2). Ate) =6 = 6!, >93 <8,
there will be solutions that oscillate for a certain time about 8,

An analysis shows that at §_ < 930 only the first
mode (84 = 8,) can exist, and at 6; > 6% only the third
(6, = 83). At .18, 8,*1 both these modes are pos-
sible, and in this case, together with the monotonic,
there may also be solutions that first oscillate about
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8,, while at _ = 6, there is also an unstable second
mode (0 = 05). The point 6,*, which either lies on the
interval [0, 05] or goes to 1nfmity, will be the maxi-
mum temperature to which it is possible to heat the
mixture in order to realize the first mode, which is
usually slow flameless combustion. As 6_ increases,
only the third high-temperature mode will be possible,
Therefore 6* may be called the ignition temperature,
and 630, by analogy, the quenching temperature (6; =
=9 = 8,, or 05" = =),

We will estimate the values 0%,
with (5)—(7),

05, In accordance

< )p<0 > + ap (%g)p>0 > _i_ !
m=—minP(8) (G1<<0<0),
(&> (@)me>c— 5

M = max {(0)

Integration of these inequalities gives the following
estimates valid on the interval {6, 05]:

0% — 0, 0% — 0, B — 8
am ———ln['l—— am ]< am
02 — B35° 02 — 05° 03 — 8,
R L B (10)

From the inequality dp/d6 > —(8)/ap it follows
that 6,* < ®*, and 65’ > @y, where ®* and ®30 are
roots of the functions

8

§¢<e>de, §w(e)de,

1

adjacent to 6, and 03, respectively. Hence it follows
that

00 —0,

< min [0;% —0,, am, ¥V 2am (6,—8;) ],
00— 0;° < min [0, — O5°, aM, Y 2aM (8, —0)]. (11)

The last two estimates in the brackets are suitable
as long as they do not exceed 63 — 6, and 8, — 8;, re-
spectively. If Q = 0, where

83

Q= §xp(@)d9,

then ®* = 95, ®3 = ¢, and, consequently, 6% < 63,

930 > By if Q > 0, then, keeping in mind the 51gns of
the integrand functlon P, we obtaln @ < b3, ®3 = 00
i. e., %< 63; £ Q <0, then®3 > 6y, ®y* = and
0, > 0,. Thus when Q = 0 both critical temperatures
(6% and 63 %, at Q > 0 the ignition temperature, and at
Q < 0 the quenching temperature exist at any a (Q in-
creases with increase in §).

If a decreases, then, in accordance with (11), for any Q there is
an @* (for Q = 0 this is @ = ®), for which 6;* < 8, 6, > 6;, With
further decrease in @ (for example, increase in the mixture feed rate
w) 6 and 63 approach 6,, contracting the region of nonuniqueness of
the solutions; the amplitude and number of the oscillations in the oscil-
latory solutions, in accordance with (9), decrease, €, becomes a node,
and a moment arrives at which 6;* = 8; = 6,,

As @ increases, the points 8y and 930 converge, respectively ap~
proaching ©,* and 84, so that at @ > & for Q > 0 the third mode and
for Q < 0 the first mode become possible at any ., and the quenching
(ignition) temperature ceases to exist, As @ increases, the point 6, be-
comes a focus, and at @ = (w = 0) a center, The number of oscil~
latory solutions and the number of oscillations about 8, increase, and
at @ = = they degenerate into an infinite set of solutions executing
periodic oscillations about €, with an amplitude from 0 to min (8%,
8y) — max (80, 8;)and not taking a definite value at x = =, (At a=
= ®, taking £ = x/1, we obtain dp/d = — (8) / bp and 8;* = 8,%,
8,9 = 85.)

Fig. 5

In the case of a small increase {decrease) in temperature when the
oscillatory solution intersects the 8 from the right (left) there may be
a transition to an oscillation of greater amplitude (at @ < « to a solu~
tion making a smaller number of oscillations), and it may therefore
be expected that the oscillatory solutions will be unstable and, in the
last analysis, lead to one of the two monotonic modes (with 64 = ) or
6, = 0y),

If 6 decreases, then 04 and 9; decrease, while 0y,
8%, and 6;" increase, so that at 6 < 0i(a) we have §;* =
=, at & = 8° the points 6, and 03 coincide forming the
pomt 02,3 = ming 03 (Fig. 4). Atd < 6% the point 02
dlsappears altogether, and for all 4_ only the first
flameless mode will exist. Therefore 6,3 may be
called the extinction temperature. (It is assumed that
the function $(0) does not have roots other than those
considered,)

As 6 increases the opposite picture is observed. At
6 > 63(a) we have 630 = —w, while 6 = 6* corresponds
to maxg0y = 64, (Fig. 5). The point 6, , is called the
combustion temperature, since at 5 > 6* there is no
such temperature and the first mode ceases to exist.

The critical values 60 6* and 6, 3> 01,7 are deter-
mined from the equatlons

P, 8 =0, dp/d8 = 0. {12)

If K =1lim {6~1p()] # 0 as § — =, which may occur
in the case of a zero-order reaction, then at6 > 1/K
05 disappears and steady-state modes will be impos-
sible at 6 > max (1/K,8% for any 0_ and g, and at
1/K < 6 = 6% (if 1/K < 6*) only for 6. > 6% (onset of
explosion).

Thus, the low-temperature flameless mode corre-
sponding to 6, is possible at 6 < 6% andaté’ =6 < 0%,
6. = 04*(a,8); the high~temperature mode corre-
sponding to 65 is possible at 6* < 6 < 1/K {if 6* < 1/K)
and at 6° =& < min (6% 1/K), 6 = 930(a,5) {(in the case
of similarity of the C and T fields it is possible at
6 >6*andat 8’ =6 <5% 0_= 65%). In these regions
outside their zone of intersection the steady-state
modes are unique, In that zone itself, i.e., at oY =
=6 < min(6*, 1/K), 65° < 6_ < 8¢* both the above~
mentioned modes exist, and, together with monotonic
solutions, there may also be solutions that oscillate
for a certain time about 6y, which clearly will be un-
stable, At8Y < 6 < 0* 6_ = 0, an unstable mode cor-
responding to 6, is possible.
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The above analysis is easily extended to the case
N > 3.

It should be noted that, apart from the basic dependence on Ty,
given by & and @, the function #(6) in(4) and, consequently, all the
critical quantities associated with it may have an additional (usually
very weak) dependence on Tq (if F(T) has a rate constant expressed by
the Arrhenius law in the Zel'dovich-Frank-Kamenetskii approximation,
then there is no such dependence). However, if it is considerable, it
is better to isolate Ty as an independent parameter, introducing the
dimensionless variables in some other way,

The solutions with 6 = 6, at £ = « exhaust all the
bounded solutions of Eq. (2), since, in accordance
with (8), (9), at a < = there are no closed curves on
the fp-plane.

Let the functiond or its derivatives have a discontinuity of the first
kind at the point = A, The picture previously obtained is basically
preserved, if at A =6, signy (A —¢) =sign $(A +¢€) (e is arbitrarily
small) A is assumed to be a root of even and atsign (A — €) =
= —signy (A + &) odd multiplicity (in the case (A £ 0) = 0 the curves
approaching the point A from the right (left) are not solutions),

If y(6) =0, 6, = 6 = 6, then the interval [6,,6,] will be a
singular solution, motion along which is impossible ¢p = 0). From any
point on this interval curves depart with an inclination 1/a > 0, There-
fore for ©,, < 6, < 6, only the trivial solutions 6 = 6_ at 6, < 6. < 6,
are possible, The points 6, and 6,, may be regarded as the two halves
of a single point 6 ,, that is subject to the general rule. Thus, at
¥(©p =~ €) > 0 (n=2k— 1), ¥(6y — 0) = 0 the curve 1,(1,) arrives at
the point 8y, from the left and at (8, + €) < 0 (v =2j — 1), ¥(6, +
+0) = 0 at the point 6;, from the right, giving a solution with 6, =
= op(6y) for 8_ < 68, 8,] and 6_ & [0,, 8,*], respectively. Other-
wise, there are no solutions with 64 = 6,(6;), apart from the trivial
solution.

If ¢O)=0(p ==0/8), 6 =8, thenatB >0 orB =0, ¥(e) <0,
P(+0) = 0 for 6. < 930 there will always be total damping of the process
(6, =0{=0); for6. > 6,* it is impossible, while for 8_ < [, 6;*],
together with total damping, there exists a mode with 8, = 65; at B =
=0, ¥(e) > 0 the mode with 6, = 6, , = 0 is possible only at 0. =0
(for any &), at B < 0 it never exists,
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